Journal of Organometallic Chemistry, 255 (1983) 279–285 Elsevier Sequoia S.A., Lausanne – Printed in The Netherlands

ON THE RELATION BETWEEN ELEMENT NMR CHEMICAL SHIFTS IN THE FOURTH MAIN GROUP

T.N. MITCHELL

Abteilung Chemie, Universität Dortmund, Postfach 500 500, 4600 Dortmund 50 (F.R.G.) (Received May 23rd, 1983)

Summary

Regression analyses of representative chemical shift data for the isotopes carbon-13, silicon-29, tin-119 and lead-207 show a reasonable carbon-silicon shift correlation (r = 0.825) and very good silicon-tin (r = 0.990) and tin-lead (r = 0.975) correlations. In the latter two cases the observed shift ratios correspond fairly closely to the $\langle r^{-3} \rangle_{np}$ ratios for the element pairs. Pentacoordination at silicon may be more important than previously realised.

A recent paper by Olah and Field [1], which deals with the correlation of carbon-13 and silicon-29 NMR shifts in analogous compounds, prompted us to investigate whether a correlation between silicon-29 and tin-119 chemical shifts or between the latter and lead-207 chemical shifts is observed.

As the basis for his C/Si correlation (which was however not placed on a numerical basis) Olah took a total of 35 compounds, the carbon chemical shifts of five of these being estimated from Grant's additivity rule [2]. We have used only literature values for a total of 43 compounds; for our Si/Sn correlation data on 48 compounds were used, for the Sn/Pb correlation 35 values were taken. The graphical results of these correlations are shown in Figs. 1–3, while the complete data used are given in Table 1. It should be noted that the coordination number of compounds of the Group IV elements is invariant for carbon but can increase to five or six for silicon, while even higher values are apparently possible for tin and lead: the literature data available do not permit the inclusion of compounds with coordination numbers greater than four in our analysis (we shall return to this point below).

The results of the statistical analyses afford the following relationships between the various chemical shifts:

 $\delta(\text{Si}) = 0.787 \ \delta(\text{C}) - 61.7; \ r = 0.825$

 $\delta(\text{Sn}) = 5.119 \,\delta(\text{Si}) - 18.5; r = 0.990$

0022-328X/83/\$03.00 © 1983 Elsevier Sequoia S.A.

Fig. 1. Correlation of ¹³C chemical shifts in carbon compounds with ²⁹Si chemical shifts in their silicon analogues.

$\delta(Pb) = 2.424 \delta(Sn) + 74.8; r = 0.975$

These three correlations will be discussed separately below: however, the following general comments are in order. The slopes of the straight lines (see Figs. 1-3) reflect the relative chemical shift dispersion of the elements. The assumption that the paramagnetic term dominates the chemical shift would suggest that the slopes will be approximately proportional to the $\langle r^{-3} \rangle_{np}$ ratios for the element pairs. The $\langle r^{-3} \rangle_{np}$ values given by Jameson and Gutowsky [3] give ratios as follows: $\delta(Si)/\delta(C) 2.0$, $\delta(Sn)/\delta(Si) 4.5$, $\delta(Pb)/\delta(Sn) 1.9$. Thus the agreement with the experimental slopes is good for the Sn/Si and Pb/Sn pairs, but poor for the Si/C pair. Other authors quote values of $\langle r^{-3} \rangle_{np}$ which give ratios corresponding more closely to the experimental results: thus those of Barnes and Smith [4] give a ratio of 1.9, while those quoted by Webb [5] give one of 1.2. Apart from $\langle r^{-3} \rangle_{np}$, effects of ΔE and of the *d*-orbitals also influence the chemical shifts, but in particular the effect of ΔE has not as yet been found quantifiable.

Fig. 2. Correlation of ²⁹Si chemical shifts in silicon compounds with ¹¹⁹Sn chemical shifts in their tin analogues.

$\delta(Si)$ vs. $\delta(C)$

The main body of data refers to hydrides, halides and hydride halides of the elements. Though the overall statistical correlation is fair, large deviations are observed for various groups of compounds (see Fig. 1): thus for Me_nXH_{4-n} , the data points lie on a straight line which passes through the "origin" ($\delta(Si) = 0$, $\delta(C) = 29.7$) for Me_4X), but has a much larger slope (2.943, r = 0.996). Similarly for Ph_nXH_{4-n} , a straight line can be drawn but with an intermediate slope (1.212, r = 0.981). As has previously been pointed out by other authors, the limited number of oxygen compounds shows a completely different behaviour to the remaining compounds in that a low-field shift of $\delta(C)$ corresponds to a high-field shift of $\delta(Si)$. Anomalous behaviour is also shown by the compounds XF_4 . In spite of the partial success of Engelhardt et al. [6] in interpreting carbon and silicon chemical shifts and in view of the behaviour observed for ¹¹⁹Sn (see below), it is perhaps worthwhile to consider the possibility that the silicon alkoxides, fluorides and (to a lesser extent) chlorides are to some extent associated in solution. Exclusion of the methoxides and XF_4 from the regression analysis improves r to 0.945, yielding the expression:

An expansion of the data base for both carbon and silicon is obviously required before the true limitations of a statistical correlation of this type can become apparent.

$\delta(Sn)$ vs. $\delta(Si)$

A larger variety of compounds is covered in this correlation, the main body of data referring to element halides and compounds with an element- sp^2 - or -sp-carbon bond. The correlation yields a straight line which passes very near the origin: $\delta(Si) = 0$ corresponds to $\delta(Sn) = -14$ ppm, $\delta(Sn) = 0$ to $\delta(Si) = 2.8$ ppm. However, interpretation of the individual data shows that the values for element hydrides, element halides and tetraalkyl (or aryl) derivatives yield lines with somewhat increased slopes. Values for compounds 14, 31 and 35 lie well away from the overall line: however, the tin alkoxides are known to be associated in solution, the monomeric Me₂Sn(O-t-Bu)₂ and MeSn(O-t-Bu)₃ having shifts of -2 and -177 ppm respectively, very close to the line if one assumes that the shifts of the corresponding silicon methoxides and t-butoxides are similar.

TABLE 1

CHEMICAL SHIFTS USED IN CORRELATIONS (in ppm vs. TMS (¹³C and ²⁹Si), Me₄Sn or Me₄Pb)

No.	Compound	δ(C)	δ(Si)	δ(Sn)	Δ(Pb)
1	Me ₄ X	27.9	0.0	0	0
2	Me ₃ XH	25.2	- 15.5	- 105	
3	Me, XH,	16.1	- 37.3	- 227	
4	MeXH,	5.9	-65.2	- 346	
5	XH₄	-2.1	- 93.1		
6	XF	91.0	- 109		
7	Me ₁ XCl	65.3	30.3	160	382
8	Me ₂ XCl ₂	85.2	32.2	140	
9	MeXCl ₁	95.0	12.5	20	
10	XCl₄	96.7	-20	-150	
11	Me ₃ XBr	60.7	26.4	128	379
12	Me ₂ XBr ₂	58.3	19.9	70	
13	MeXBr ₃	31.5	- 19.2	- 170	
14	XBr₄	- 28.5	- 92.7	-638	
15	Me ₃ XI	42.0	8.9	39	171
16	MeXI		- 144	- 700	
17	XI	- 292.3	- 346.2	- 1700	
18	H ₁ XF	75.4	17.4		
19	H ₁ XCI	25.1	- 36.1		
20	$H_{1}XCl_{2}$	54.2	-11.0		
21	HXCI	77.7	- 36.1		
22	HAXBr	10.2	- 49.0		
23	H,XBr,	21.6	- 30.4		
24	HXBr,	12.3	-43.3		
25	H ₂ XI	-20.5	-83.3		
26	H ₂ XI,	- 53.8	- 99.6		
27	HXI.	- 139.7	- 175.9		
28	Cl ₂ XBr	67.8	- 34.3		
29	Cl ₂ XBr ₂	35.0	- 50.7		
30	ClXBr,	5.1	- 69.8		
31	Br ₂ Xl ₂		-212.3	- 1190	
32	BrXI		- 280.1	- 1450	
33	Me ₁ XOMe	72.1	17.5	129	331
34	Me ₂ X(OMe) ₂	100.0	-2.0	- 126	
35	MeX(OMe)	115.0	-40.5	ca430	
36	X(OMe)	121.9	- 79.2		
37	Me-XO-t-Bu	76.3	8.5	91	
38	Me ₃ XÓAc "		21.9	129	428 (in H ₂ O)
39	X(OAc)₄		- 95.1		- 1869
40	Me ₁ XSMe		16.2	90	239
41	$Me_2 X(SMe)_2$		28.1	144	
42	MeX(SMe)		34	167	
43	Me ₃ XSeMe			46	98
44	Me ₃ XNEt ₂		3.7	58	242
45	Me ₃ XPPh ₂			-4	40
46	$(Me_3X)_3P$		0.3	36	
47	Me ₃ XSiMe ₃		- 19.8	- 127	
48	Me ₃ XSnMe ₃	21.1	- 10.3	-110	- 324
49	$Me_2X(SnMe_3)_2$	10.1		262	
50	$X(SnMe_3)_4$	- 25.7		- 806	
51	$(Me_3X)_2Hg$	59.5	62		
52	$Me_3X \cdot Re(CO)_5$		- 14.4	- 89	
53	$Me_3X \cdot Mn(CO)_5$		- 4.5	63	

TABLE 1 (continued)

No.	Compound	δ(C)	δ(Si)	δ(Sn)	Δ(Pb)
54	Me ₃ X·Co(CO) ₄		44.0	151	
55	$(Me_3X)_2CN_2$		-0.1	38	
56	Me ₃ XCH=CH ₂	33.7	- 7.6	- 40	-65
57	$Me_2 X(CH=CH_2)_2$	1	- 13.7	- 84	
58	$MeX(CH=CH_2)_3$		- 20.6	- 124	
59	$X(CH=CH_2)_2$		- 28.5	- 162	
60	Me ₃ XCH=CHMe	Ь	- 10.6	- 58	-110
61	Me ₂ X(CH=CHMe	c) ₂ ^b	-22.0	-116	- 220
62	MeX(CH=CHMe)	, <i>b</i> 3	- 38.9	- 175	- 330
63	X(CH=CHMe) ₄ ^b		- 51.2	- 234	- 440
64	Me₃XC≡CMe			- 74	- 140
65	$Me_2 X(C \equiv CMe)_2$			- 156	- 305
66	$X(C=CMe)_4$			- 284	- 686
67	Me ₃ XC=CXMe ₃		- 19.3	- 81	- 159
68	Et ₄ X	37.1		-6	71
69	Et ₃ XCl	1		153	472
70	Et ₃ XI			39	303
71	Et ₃ XOAc			102	317
72	Bu ₄ X	36.9		-7	40
73	Bu ₃ XOAc			96	383
74	$Bu_2 X(OAc)_2$			- 195	- 448
75	$(Me_3CCH_2)_4X$			- 53	47
76	Ph ₃ XH	62.0	- 17.0	- 148	
77	Ph_2XH_2	37.0	- 33.0	-234	
78	PhXH ₃	21.0	- 60.0	- 320	
79	Ph ₃ XCl	81.2	1.3	- 48	33
80	Ph ₃ XI			-115	- 131
81	Ph ₃ XOAc			- 121	- 93
82	Ph₄X	65.0		- 137	- 179
83	Ph ₃ XMe	53.6	- 12.5	- 93	- 119
84	$Ph_2 XMe_2$		- 9.4	- 60	
85	PhXMe ₃	34.5	-5.1	- 28	
86	$\bigcirc \checkmark \bigcirc$			121	416
87) .		- 80	- 199

^a HOAc = CH_3COOH . ^b = cis-configuration at the double bond.

δ (Pb) vs. δ (Sn)

As in the former correlation, the main types of compound included are halides and derivatives with a metal- sp^2 -carbon bond. Though the overall correlation is good, the straigth line does not pass so close to the origin; however, consideration of only the vinyl and ethinyl derivatives yields a line with a somewhat lesser slope (2.232) and which passes much closer to the origin ($\delta(Pb) = 26.5$ for $\delta(Sn) = 0$, $\delta(Sn) = -11.8$ for $\delta(Pb) = 0$ ppm). However, the accumulation of more data on lead compounds is required. It should be noted that lead chemical shifts show a much larger dependence on solvent than do tin shifts, and it is thus important to have data on solutions in "neutral" solvents: $CHCl_3$ should perhaps be taken as the standard solvent for Group IV compounds for comparison purposes, possibly at a standard concentration wherever possible.

Data sources

The carbon data are mainly those quoted by Olah [1], with additional values from the compilation by Bremser and co-workers [7]. Silicon chemical shifts were mostly obtained from Marsmann's review [8] and the majority of the tin data from the review by Smith and Tupciauskas [9]. No corresponding review article exists for lead chemical shifts: data were taken from our own work [10] as well as papers by Cox [11], van Beelen et al. [12], Cooper et al. [13], Maciel and Dallas [14], Wrackmeyer [15], Lorberth [16] and Kennedy et al. [17]. Where two or more shifts are available for the same compound, either the average value or (if large deviations are reported) the "most probable" value (i.e. a purely subjective one) was taken. It should be noted that the data used were not obtained under standard conditions: for conditions of measurement the reader is referred to the primary literature.

References

- 1 G.A. Olah and L.D. Field, Organometallics, 1 (1982) 1485.
- 2 W.M. Litchman and D.M. Grant, J. Amer. Chem. Soc., 90 (1968) 1400.
- 3 C.J. Jameson and H.S. Gutowsky, J. Chem. Phys., 40 (1964) 1714.
- 4 R.G. Barnes and W.V. Smith, Phys. Rev., 93 (1954) 95.
- 5 G.A. Webb in R.K. Harris and B.E. Mann (Eds.), NMR and the Periodic Table, Academic Press, London, 1978.
- 6 G. Engelhardt, R. Radeglia, H. Jancke, E. Lippmaa and M. Mägi, Org. Magn. Res., 5 (1973) 561.
- 7 W. Bremster, L. Ernst, B. Franke, R. Gerhards and A. Hardt, Carbon-13 NMR Spectral Data, 3rd edit., Verlag Chemie, Weinheim, 1981.
- 8 H.C. Marsmann in P. Diehl, E. Fluck and R. Kosfeld (Eds.), NMR-Basic Principles and Progress, Springer-Verlag, Berlin, 1981; Vol. 17.
- 9 P.J. Smith and A. Tupciauskas, Ann. Repts. NMR Spectroscopy, 8 (1978) 291.
- 10 T.N. Mitchell, J. Gmehling and F. Huber, J. Chem. Soc. Dalton Trans., (1978) 960; T.N. Mitchell and H.C. Marsmann, Org. Magn. Res., 15 (1981) 263.
- 11 R.H. Cox, J. Magn. Res., 33 (1979) 61.
- 12 D.C. van Beelen, H.O. van der Kooi and J. Wolters, J. Organomet. Chem., 179 (1979) 37.
- 13 M.J. Cooper, P.J. Smith, A.K. Holliday, P.H. Makin and R.J. Puddephatt, J. Organomet. Chem., 65 (1974) 377.
- 14 G.E. Maciel and J.L. Dallas, J. Amer. Chem. Soc., 95 (1973) 3039.
- 15 B. Wrackmeyer, J. Organomet. Chem., 166 (1979) 353.
- 16 E. Glozbach and J. Lorberth, J. Organomet. Chem., 191 (1980) 371.
- 17 J.D. Kennedy, W. McFarlane and G.S. Pyne, J. Chem. Soc. Dalton Trans., (1977) 2332.